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Figure 1: A large repertoire of multi-fragment effects can be supported from our framework: (a) Illustrating order-independent transparency
of an engine consisting of 195 random-painted components. (b) Rendering boolean operations between a head (model A) and a clipped sphere
(model B) surfaces. (c) Detecting collision (highlighted with red color) between a twirl object moving towards a static clipped sphere.

Abstract

k-buffer facilitates novel approaches to multi-fragment rendering
and visualization for developing interactive applications on the GPU.
Various alternatives have been proposed to alleviate its memory haz-
ards and to avoid completely or partially the necessity of geometry
pre-sorting. However, that came with the burden of excessive mem-
ory allocation and depth precision artifacts. We introducek+-buffer,
a fast and accurate framework that simulates thek-buffer behav-
ior by exploiting fragment culling and pixel synchronization. Two
GPU-accelerated data structures have been developed: (i) themax-
array and (ii) themax-heap. These memory-bounded data struc-
tures accurately maintain thek-foremost fragments per pixel in a
single geometry pass. The choice of the data structure depends on
the sizek (application-dependent). Without any software-redesign,
the proposed scheme can be adapted to perform as a Z-buffer or an A-
buffer capturing a single or all generated fragments, respectively. A
memory-friendly strategy is also proposed, extending the proposed
pipeline to dynamically lessen the potential wasteful memory allo-
cation. Finally, an extensive experimental evaluation is provided
demonstrating the advantages ofk+-buffer over all priork-buffer
variants in terms of memory usage, performance cost and image
quality.

CR Categories: I.3.6 [Computer Graphics]: Methodology and
Techniques—Graphics data structures and data types

Keywords: GPU, k-buffer, a-buffer, max-heap, multi-fragment
effects, real-time, pixel synchronization

1 Introduction

Determining visibility when rasterizing objects in arbitrary or-
der is a challenging task in terms of time and space for a host
of algorithms that simulate complex rendering effects in real-
time. Many image-based techniques produce visually realistic
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results at interactive speeds in games (order-independent trans-
parency [Maule et al. 2011], shadows [Yang et al. 2010], hair
rendering [Yu et al. 2012]) and other graphics applications (volume
rendering [Callahan et al. 2005], collision detection [Jang and Han
2008], constructive solid geometry [Rossignac et al. 2013]) enabled
by a family of GPU-accelerated methods that capture the surface-
intersections (fragments) when ray casting from the viewer position
through each screen pixel. Figure2 shows an illustrative example
of the fragment generation process through per-pixel ray-surface
intersection tests. Buffer-based techniques ensure the correct
visibility order on the level of fragments, avoiding drawbacks (e.g.
geometry interpenetration, primitive splitting, dynamic scenes) that
occur in object/primitive sorting techniques [Govindaraju et al.
2005; Sintorn and Assarsson 2008].

Extending Z-buffer, where the closest-to-viewer fragment is stored,
A-buffer [Carpenter 1984] was the first method to capture all
fragments per pixel in a single geometry pass. Fragments are
stored intovariable-length linked listsper pixel during geometry
rendering, followed by a post-sorting process that correctly reorders
fragments by their depth. Several variants and optimizations [Maule
et al. 2011] have been proposed recently to simulate the behavior
of the A-buffer architecture with reduced memory requirements
generating more or less approximate image outputs.

k-buffer [Bavoil et al. 2007] employed per-pixelfixed-size vectors
maintaining ak-nearly sorted sequence of fragments in bounded
GPU memory. When the number of generated fragments exceedsk,
the rasterization order of the generated fragments affects the final re-
sult due to memory read-modify-write (RMW) hazards. Heuristics
(primitive pre-sorting and triangle batches) may alleviate most of the
image quality flaws with the burden of higher computational cost.
A number of GPU-acceleratedk-buffer variants have been recently
introduced that avoid RMW hazards and geometry ordering prior to
rasterization by either initially building an A-buffer [Yu et al. 2012]
or exploring a two-geometry-pass scheme based on atomic memory
operations [Liu et al. 2010; Maule et al. 2013]. However, a signifi-
cant increase of unbounded memory is required when A-buffer is
used as temporary storage. On the other hand, atomic operations are
restricted to only work on 32-bit unsigned integer format resulting
in (i) visual artifacts from lost precision when converting depth
values and (ii) performance cost of an additional geometry pass.

We introducek+-buffer (K+B), a single-geometry-passk-buffer
framework that overcomes the aforementioned performance
bottlenecks, memory footprints and rasterization artifacts. Inspired
by [Crassin 2010b], a semaphore-basedspin-lock mechanism
ensures atomicity of the per-pixel fragment operations at the shared
memory. Implementation details are also provided to easily switch
to the hardware-implemented pixel syncing solution available on the
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Haswell architecture [Salvi 2013]. To alleviate contention (busy-
waiting) of distant fragments, we concurrently performculling
checks that efficiently discard fragments that are further from all
currently maintained fragments. Two array-based data structures are
built on the GPU to accurately store the closest per-pixel fragments:
(i) max-array, an array where the maximum element is always stored
at the first entry and (ii)max-heap, a complete binary tree in which
the value of each internal node is greater than or equal to the values
of the children of that node. Despite its linear complexity, the former
performs faster than the latter when the problem size is sufficiently
small. For example, order-independent transparency presents
high approximation images even with a small core of captured
layers (k ≤ 16). Conversely, plausible photorealistic appearance of
hair requires the contribution of a larger set of hair strands (k > 16).

To avoid the wasteful pre-allocated storage requirements of
pixels that contain less thank fragments (k-fragmentlesspixels,
see Figure2), we have extended our framework by the S-buffer
pipeline [Vasilakis and Fudos 2012]. An additional geometry pass is
performed for counting fragments per pixel, enabling us to allocate
the exact amount of memory that we actually need. Memory is
linearly organized intovariable contiguous regionsfor each pixel,
making it feasible to implement both proposed data structures. To
our knowledge, this is the firstk-buffer implementation with dy-
namic and precise allocation of the required storage space. Without
any adaptation, our framework can also support the functionalities
of the Z-buffer and A-buffer by settingk to either one or large
enough to handle all possible per-pixel fragment cardinalities.

The structure of this paper is as follows: Section2 offers a brief
overview of prior art. Section3 introduces the algorithmic details of
ourk+-buffer framework. Section4provides extensive comparative
results for several of multi-fragment rendering alternatives. Finally,
Section5offers conclusions and identifies future research directions.
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Figure 2: Illustrating the construction process of a row of a
4-buffer (highlighted with blue at the top-right thumbnail), when ray
casting the dragon model. A significant amount of memory space
is wasted at pixels that consist of less than 4 fragments due to the
pre-allocation of the same buffer length per pixel.

2 Related Work

There is an abundance of recent research on treating the problem
of storing multiple fragments from different perspectives. A-
buffer [Carpenter 1984] exploited an unbounded buffer for building
dynamically created per pixel lists ofall fragments in submission
order using a single rendering pass. Then, stored fragments are post-
sorted according to their depth values. An actual GPU-accelerated
implementation of A-buffer based on atomic memory operations
was recently introduced in [Yang et al. 2010] (LL). However, its
performance degrades rapidly due to the heavy contention and the

random memory accesses when constructing and assembling the
entire fragment list, respectively. A memory-friendly variation
of this algorithm was described in [Crassin 2010b], wherepaged
per-pixel linked-lists (LL-Paged) improve caching and data bus
occupancy. On the other hand, [Vasilakis and Fudos 2013] improved
performance by concurrently storing fragments into more than one
per-pixel linked lists. They have proposed to uniformly split the
depth range of the rasterized scene (see also [Liu et al. 2009b; Sintorn
and Assarsson 2009]) and assign one linked list in each subdivision.

FreePipe [Liu et al. 2010], a complete CUDA-based rasterization
pipeline, maintains multiple fragments using constant-size per pixel
vectors. To ensure complete fragment extraction for all pixels, the
buffer length must be set accurately. FreePipe has been realized
using modern OpenGL APIs [Crassin 2010a], thus avoiding switch-
ing from the traditional graphics pipeline to a software rasterizer.
Despite its high computation speed, FreePipe suffers from large and
potentially unnecessary memory consumption. Last but not least,
S-buffer (SB) [Vasilakis and Fudos 2012], a two-geometry-passes
A-buffer implementation on the GPU, has overcome the limitations
of both linked-lists and fixed-array techniques by taking advantage
of the fragment distribution and the sparsity of the pixel-space.

Regardless of the data structure, the aforementioned approaches
suffer from (i) memory overflows resulted from the unbounded
buffer needed to store all generated fragments, and (ii) performance
bottlenecks arise when the number of per-pixel fragments to be post-
sorted increases significantly. To this end,k-buffer (KB) [Callahan
et al. 2005; Bavoil et al. 2007] reduced memory requirements
capturing thek-closest to the viewer fragments in a single geometry
rasterization. However, it is susceptible to disturbing flickering arti-
facts caused from RMW hazards during fragment insertion updates.
[Liu et al. 2009a] extended this work to a multi-pass approach (KB-
Multi) achieving robust rendering behavior with the trade-off of low
frame rates. Moreover, [Bavoil and Myers 2008] eliminated most of
the memory conflicts by performingstencil routingoperations on a
multi-sample anti-aliasing buffer (KB-SR). Finally, [Zhang 2013]
explored amemory-hazard-awaresolution (KB-MHA) based on
a depth-error correction coding scheme. In practice however, they
cannot guarantee correct results in all cases. The image quality of
this class of methods is highly dependent on a coarse CPU-based
pre-sorting in primitive-space which eliminates the arrival of out-of-
order fragments. Multiple rendering iterations, are further required
to provide an A-buffer output, due to the limited number of multiple
render targets on the GPU. This results in significant performance
downgrade. Conversely, [Wang and Xie 2013] proposes partitioning
the input scene into components with a few layers and then rendering
them individually in order to fit into the limited KB-SR buffer size.
However, this comes with the burden of non-supporting animated
scenes and having limited order-dependent applicability.

Multi depth testscheme (KB-MDT), developed in both CUDA [Liu
et al. 2010] and OpenGL [Maule et al. 2013] APIs, guarantees correct
depth order results by capturing and sorting fragments on the fly via
32-bit atomic integer comparisons. Since 64-bit atomic operations
are not supported from available APIs to update the depth and color
buffers simultaneously, a costly additional geometry pass is therefore
suggested. Furthermore, noisy images may be generated due to the
precision lost when converting floating depth values of close frag-
ments. Similar to our method, [Salvi 2013] extended the originalk-
buffer to avoid fragment racing by employing hardware-aware pixel
synchronization (KB-PS). However, this method is currently com-
patible only with graphics cards based on the Haswell architecture.

Finally, [Yu et al. 2012] proposed two linked-list-aware solutions to
accurately compute thek-foremost fragments. The idea of the first
one is to capture all fragments by initially constructing A-buffer by
the method of [Yang et al. 2010], followed by a step that selects and
sorts thek-nearest fragments (KB-ABLL). On the other hand, the
second approach directly computes depth-ordered per-pixel linked
lists avoiding the unnecessary A-buffer construction (KB-LL).
Despite the fact that the second approach requires less storage,
fragments are sparsely stored in graphics memory causing the
additional allocation of contiguous blocks of memory.



Table1 presents a comparative overview of allk-buffer alternatives
with respect to memory requirements, rendering complexity,
fragment extraction accuracy and sorting necessity.

3 Framework Overview

We propose an efficientk-buffer implementation on the GPU which
is free from: (i) geometry sorting prior rasterization, (ii) unbounded
memory necessity, (iii) RMW memory-hazards and (iv) depth pre-
cision conversion artifacts. Contrary to most of the aforementioned
k-buffer alternatives which store and sort the generated fragments
on the fly, we follow a faster strategy similar to the one used by the
A-buffer construction: Thek-nearest fragments are captured in an
unsorted sequence, followed by a post-sorting step that reorders
them by their depth. We explore a GPU-acceleratedspin-lock
strategy via pixel semaphores to ensure real-time synchronized
construction of the unsortedk-front fragments (Section3.1). Two
bounded array-based data structures for fragment data are intro-
duced which enable a low cost culling test that concurrently discards
outlier fragments (Section3.2). A pipeline extension is further
introduced to dynamically and precisely handle graphics memory
allocation (Section3.3). k+-buffer can also be considered as an
unified framework that successfully integrates the functionalities
of Z-buffer, k-buffer and A-buffer (Section3.4). The overall
framework is described by offering shader-like pseudocode and the
fragment processing pipeline. Finally, we highlight features and
tradeoffs of our framework, pointing out implementation details and
light-weight modifications that can be used to guide the decision of
which pipeline alternative to employ in a given setting.

3.1 Spin-lock Strategy

Per-pixel binary semaphoresare utilized as a synchronization
mechanism to ensure fragment exclusive use of the critical storage
section. Taking into account the possibility of simultaneous access
to the lock, which could cause race conditions, an implementation of
an atomictest-and-setoperation is explored. The calling process ob-
tains the lock if the old value was0. It spins writing1 to the variable
until this occurs. One way to implement spin-lock strategy employ-
ing test-and-set into a pixel shader is shown in the Algorithm1.

Algorithm 1 MutualExclusion (Texturet, Pixelp)

1: while truedo ⊲ spin until lock is free
2: if imageAtomicExchange(t, p, 1) == 0 then
3: {critical section} ⊲ exclusive use
4: imageStore(t, p, 0); ⊲ release lock when finished
5: discard; ⊲ exit shader
6: end if
7: end while

A 32-bit unsigned integer texture with internal pixel format
R 32UI is allocated to represent the per-pixel semaphores. At
first, a full-screen rendering (clear pass) is executed to initialize
texture with zeros. Our method is enhanced by the OpenGL’s
imageAtomicExchange(texture lock, ivec2 P, uint V) function
which atomically replaces the value V of the atomic object with the
argument into texel at coordinate P and returns its original value.
Note that there is no need for an atomic operation to perform the
lock release (since the running fragment has exited from the critical
section) as opposed to the implementation of [Crassin 2010b] where
an additional costly atomic exchange is used.

Pixel Synchronization (PS) is a graphics extension that Intel has
implemented for 4th Generation Intel Core processors with Iris
and Iris Pro graphics based on Haswell architecture. PS provides a
performance-wise inexpensive mechanism which avoids fragment
conflicts in the critical section and ensures that RMW memory
operations are performed in submission order [Salvi 2013]. Our
framework can be enhanced by the use of PS without remodeling
the proposed pipeline. Implementation-wise, a simple call ofbegin-
FragmentShaderOrderingINTEL()function is necessary to provide

fragment serializability. Thus, the per-pixel semaphore-based
spin-lock strategy can be omitted (specifically, lines 18-19 and
25-28 in Algorithm3). Avoiding the usage of per-pixel semaphores
also results in reduced memory demand. While DirectX11+ and
OpenGL extensions are available for Intel graphics cards, we expect
that these will be supported in the near future by all manufacturers.

3.2 Fragment Capturing

A geometry rendering (store pass) is initially carried out to capture
the closest fragment data per-pixel in a 64-bit floating point 3D array
buffer with internal format of RG32F, (R for color and G for depth)
andk length. Figure2 illustrates a k+-buffer which can hold up to
400 fragments (screen size:10× 10, k = 4).

To alleviate the spinning ofn generated fragments that do not
belong to the closestk, a fast culling mechanism is performed.
The idea is to efficiently discard each incoming fragmentfi,
∀i ∈ {0, . . . , n − 1} that has equal or larger depth value (fi.z)
from all currently maintained fragments, before trying to acquire
the semaphore. Note thati determines the submission order. Let
KBi[:] = {KBi[j], j = 0 . . . k − 1} denotes the contents of the
k-buffer when fragmentfi has been processed. Initially, we don’t
discard any incoming fragment until the fragment storage buffer
is full (∀i < k). Then, we discard all fragmentsfi such thatfi.z
≥ max{KBi−1[:].z}. On the other hand, a fragment withfi.z
< max{KBi−1[:].z} replaces the fragment of the KB with the
largest depth value. This strategy guarantees that thek-nearest
fragments will always survive since:max{KBn−1[:].z} ≤ · · · ≤
max{KBi−1[:].z} ≤ · · · ≤ max{KBk−1[:].z}.

Note that this process has no impact at the worst case scenario of
fragments arriving in descenting depth order. To achieve fragment
culling without traversing the entire pixel row for every incoming
fragment, we have developed two array-based data structures on the
GPU that both store the maximum element at the first array position:
(i) max-array(K+B-Array) and (ii)max-heap(K+B-Heap). Thus,
this operation is performed in constant time. Figure3 illustrates
how two incoming fragments are successfully discarded using this
formula when the buffer is completely full.

Max-array can be considered as an array where the fragment with
the largest depth value is always stored at the first location and the
rest are randomly positioned. When an incoming fragment obtains
a semaphore, it stores its information in the first empty entry (O(1)).
In this case, a per-pixelcounter(32-bit unsigned integer texture with
internal pixel format R32UI) is utilized as index and incremented
after a successful insertion. Per-pixel counters are initialized to
zero during the clear full-screen rendering pass. If the array is full
(counter == k), it takes the place of the fragment with the larger
depth value. Note that since culling mechanism resides outside
critical section, an additional checking is mandatory to guarantee
correct results. To keep max-array consistent after an insertion on a
completely filled array, we find the fragment with the largest depth
value (O(k)) and swap it with the newly added fragment (except
the latter is the largest one). This process is implemented without
the use of any costly atomic memory operations since fragment
atomicity is guaranteed.

However when the problem size increases rapidly (k > 16),
fragment data information is maintained in a max-heap data
structure. Max-heap is a complete binary tree (shapeproperty) in
which all nodes are greater than or equal to each of its children (heap
property). Max-heap can be implemented using a simplek-sized
array without allocating any space for pointers: If the tree root is at
index0, then each element at indexi ∈ [0, k) has children at indices
2i+1 and2i+2 and its parent is located at index⌊ (i−1)

2
⌋. Since the

first node contains the largest element, the core pipeline followed
by max-array is not altered. Both inserting operations to an empty
or a full heap modify the heap to conform to the shape property
first, by adding nodes from the end of the heap or replacing the
heap root (O(1)). Then, the heap property is restored by traversing
up-heap or down-heap (O(log2 k)). Pseudocode for both insertion
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Figure 3: Overview of the insertion process of an arbitrary sequence of out-of-order fragments when (left) max-array and (right) max-heap
data structures withk = 8 are utilized. The incoming fragment in each step is highlighted with a glow effect.When the array is full, fragments
with value larger than the maximum captured fragment (yellow-colored) are efficiently discarded (f8.z= 25 andf10.z= 18).

functions is shown in Algorithm2, where P(f) defines the parent of
a fragmentf and L(f) and R(f) its left and right children. Figure3
illustrates how both data structures withk = 8 are constructed
and updated from a number of out-of-order fragment insertions. A
representation comparison between max-array and max-heap node
pointers is also shown.

Algorithm 2 InsertToHeap (Heaph, Pixelp, Fragmentf , Int k)

1: procedure UP-HEAP(h, p, f, k)
2: i := 0;
3: h[p.counter] := f ; ⊲ Addf to the bottom level ofh
4: while i++< log2(k) do ⊲ Iterate until leaves are reached
5: if f .z> P(f).z then ⊲ Comparef with its parent
6: swap(f, P(f)); ⊲ Swapf with its parent
7: else
8: break; ⊲ Correct depth order, exit
9: end if

10: end while
11: end procedure

12: procedure DOWN-HEAP(h, f, k)
13: i := 0;
14: h[0] := f ; ⊲ Replace root withf
15: while i++< log2(k) do ⊲ Iterate until leaves are reached
16: C(f) := max{L(f),R(f)}; ⊲ Findf ’s largest child
17: if f .z< C(f).z then ⊲ Comparef with its largest child
18: swap(f, C(f)); ⊲ Swapf with its largest child
19: else
20: break; ⊲ Correct depth order, exit
21: end if
22: end while
23: end procedure

Finally, a sorting process is employed to reorder the fragments for
each pixel before generating the final image (resolve pass). Un-
sorted fragments are initially copied into a local array before per-
forming the depth sort, as it is relatively faster to perform read-write
operations in the register space rather in the global graphics memory.
Based on the number of captured fragments, a mechanism decides
which sorting algorithm is applied to the pixel. Despite its quadratic
complexity, insertion sortis faster for sorting small fragment se-
quences (k ≤ 16). Whenk increases, O(k log k) sorting algorithms,
such asshell sort, have better performance [Knowles et al. 2012].

3.3 Precise Memory Allocation

Similar to allk-buffer alternatives wherek is the same for all pixels,
k+-buffer suffers from potentially large unused memory space
allocation ofk-fragmentless pixels. For example, Figure2 illustrates
the wastefully allocated storage of a 4-buffer for (top) a pixel that
consists of 2 fragments and (bottom) an empty-pixel. Note that the
value ofk is not automatically adjusted based on the rasterized scene
and must be carefully set a priori by the user.

Inspired by S-buffer [Vasilakis and Fudos 2012], we introduce
a memory-awarek+-buffer implementation using two geometry
passes (K+B-SB). A precise allocation of the required memory
space is achieved by performing an initial geometry rendering
(count pass) which sums up the number of fragments covering each
pixel. Contrary to S-buffer where all fragments contribute to the
per-pixel aggregation, we bound the number of fragments that affect
a pixel byk whenf(p) > k, wheref(p) is the number of generated
fragments at pixel locationp[x, y]. For each incoming fragment,
the per-pixel counter is atomically incremented. When the value
of the counter reachesk, the subsequently arriving fragments are
discarded. The total size of thek+-buffer is estimated by accumu-
lating the bounded per-pixel fragmentsfk using hardware occlusion
queries. Then, the memory offset lookup table (referencing pass)
is computed in parallel fashion exploiting sparsity in pixel space.
For additional information of the algorithmic details and shader
implementations of this full-screen rendering pass, we refer reader
to the original paper of S-buffer. Finally, per-pixel counters are
reinitialized to zero to guide the subsequent storing phase.

A geometry rasterization is employed to store the most significant
fragments to a hybrid buffer scheme starting from the memory
offsets computed for each pixel. Knowing its fragment cardinality
a priori, each pixel can efficiently choose the fastest way of storing
its fragments in either a max-array or a max-heap storage. Note
that this is feasible since both data structures are implemented
using fixed-arrays. Since max-array structure inserts faster than
max-heap when the capacity is not full andk stays small, we apply
the following strategy: iff(p) > k andk > 16 then we pick
max-heap, otherwise we use the max-array data structure as storage
buffer (see also Section4).

In terms of performance, accessing global memory for concurrently
storing all fragments becomes a significant bottleneck as opposed
to the original single-passk+-buffer which benefits from the
fast operations in the register memory space. Last but not least,
the need of an additional geometry rendering step also adds a
tessellation-dependent computation cost.

The completek+-buffer framework, including the original and
its memory-aware version, is shown in Figure4 and Algorithm3,
wherep.name denotes the corresponding member value of pixel
structurep. Similarly, a[i].name defines information located at
i position in the buffer arraya, andf .name denotes attributes of
each running fragmentf . insertempty() and insertfull() are the
abstract insertion functions. max-array and max-heap own versions
of both functions are available in the shader source code provided as
supplementary material.

3.4 Support of Z-buffer and A-buffer

Without loss of generality,k+-buffer can also be considered as a
unified framework that successfully integrates the functionality of Z-
buffer,k-buffer and A-buffer by simply adjusting the value ofk. By



allocating a single entry per pixel (k = 1), our method ensures dis-
playing the closest fragment to the viewer. However, this comes with
the additional expense of extra memory requirements and perfor-
mance downgrade when compared to the hardware depth buffering.

On the other hand, users have to set the value ofk large enough
to avoid any fragment-overflow (k = maxp{f(p)}). More
specifically, our framework can be considered as a hybrid scheme
that correctly simulates the behavior of FreePipe (when K+B is
used) or S-buffer (when K+B-SB is used). Despite the fact that our
framework is not restricted from (i) multiple render targets and (ii)
samples of the anti-aliasing buffer, a multi-pass variation may be
required to achieve a memory-bounded A-buffer functionality. In
this case,maxp{f(p)}/k rendering iterations have to be performed,
resulting at a significant workload increase. Performance-wise,
max-array structure should naturally be chosen as the fragment
storage due to its constant insertion complexity when the array is
not full (∀p[x, y] : f(p) ≤ k).

Algorithm 3 k+-buffer (Arraya, Pixelp, Fragmentf , Int k)

1: procedure CLEAR(p) ⊲ full-screen pass
2: p.counter:= 0;
3: p.semaphore:= 0;
4: end procedure

5: procedure COUNT(p, k) ⊲ geometry pass
6: if p.counter< k then
7: p.counter← p.counter+1; ⊲ bounded fragment accumulation
8: else
9: discard;

10: end if
11: end procedure

12: procedure REFERENCING(p) ⊲ full-screen pass
13: computepixel offset(p.counter);
14: p.counter:= 0;
15: end procedure

16: procedure STORE(a, p, f, k) ⊲ geometry pass
17: if p.counter< k or f .z< a[0].z then ⊲ fragment culling
18: while truedo
19: if (p.semaphoreև 1) == 0 then
20: if p.counter< k then ⊲ enter critical section
21: insertempty(p.counter++);
22: else if f .z< a[0].z then
23: insertfull();
24: end if ⊲ exit critical section
25: p.semaphore:= 0;
26: break;
27: end if
28: end while
29: end if
30: end procedure

31: procedure RESOLVE(p) ⊲ full-screen pass
32: if p.counter≤ 16 then
33: insertionsort(p.counter);
34: else
35: shellsort(p.counter);
36: end if
37: computeeffect(p.counter);
38: end procedure

⊲ where{←,և} denote atomic{store, exchange} operations

Figure 4: Diagram of thek+-buffer pipeline. Each box represents
a shader program. The blue boxes are executed per-pixel using a
full-screen rendering pass, while the green ones are executed for
each geometry-rasterized fragment.

4 Results

We present an experimental analysis of ourk+-buffer approach
against a set ofk-buffer and A-buffer realizations focusing on
performance, robustness, and memory requirements under different
testing conditions. We have measured performance in terms
of frames per second (fps) and milliseconds (ms) and memory
requirements in terms of megabytes (MB). For the purposes of
comparison, we have developed two variations of KB-ABLL, where
instead of using per-pixel linked lists for the A-buffer construction,
we have applied either fixed-length (KB-ABArray) or variable-
length (KB-ABSB) arrays for each pixel. The shader source code
from all testing methods has been also provided as supplementary
material. All methods are implemented using OpenGL4.3 API and
performed on a NVIDIA GTX480 graphics card (GeForce320.49
drivers) with1.5 GB memory.

Figure1 demonstrates the importance of accurately handling multi-
fragments for several applications (transparency effects [Maule
et al. 2011], csg operations [Rossignac et al. 2013], and collision
detection [Jang and Han 2008]). Table 1 presents a comparative
overview of all k-buffer alternatives with respect to memory
requirements, rendering complexity, and other features.

4.1 Performance Analysis

We have performed an experimental performance evaluation of
our methods against competing techniques using a collection of
scenes under several different configurations. Instead of rendering
scenes under different image resolutions, we have used a854× 480
viewport and perform zooming operations defining the percentage
of image being rasterized. For a fair comparison, all methods are
tested under artificially generated scenes that cover a percentage of
screen size (or pixel density:pd) and producen = r · k randomly
arrived fragments per pixel, wherer ≥ 1.

4.1.1 k -buffer Comparison

Impact of k. Figure5 shows how the computation time, for each
rendering pass of a set ofk-buffer methods, scales by increasing
the value ofk = 4, . . . , 64 for a scene that consists ofn = 128
fragments per-pixel. Except from KB-MDT which needs two passes
(namely, Store(Z) and Store), the other memory-bounded methods
require to rasterize the scene only once. We observe that our K+B-
Array and K+B-Heap perform better than the rest of the techniques
for all k values. As expected, K+B-Heap performs better than
K+B-Array when moving from low to highk values. Note that the
Resolvestep is more expensive for A-buffer-aware methods, since
it has to locate the closestk fragments from all captured ones before
sorting. KB-LL and KB-MDT do not perform depth reordering
since they both store and sort fragments on the fly. Despite the good
performance of KB-MDT for small buffer sizes, the computation
cost of storing and sorting depth fragments exhibits a rapid increase
for largerk values. This leads to an important conclusion: a future
single-pass KB-MDT, which will be enhanced by the expected
64-bit atomic updates on the graphics memory, will present an in-
significant performance gain. Note that K+B is up to25× faster than
the current implementation of KB-MDT whenk = 64. Finally, we
observe thatCountandResolvepasses of K+B-SB cost less in terms
of computations as compared to the ones of KB-ABSB due to the
restricted operations carried out by the former. However, slow frag-
ment storing in global memory from K+B-SB increases fragment
spinning which subsequently results at a performance downgrade
when the rasterized fragments are significantly increased.

Impact of Sorting. Figure 6 illustrates performance compari-
son of our bounded K+B against KB and KB-SR methods for
varying k values. All methods are tested under two scenar-
ios wheren = k, . . . , 1024 fragments are generated for the
pd = {25%, 75%} of all pixels. To accurately capture the closest
fragments without RMW hazards from KB and KB-SR, the scene is
rasterized in depth order. K+B-Array performs slightly better than
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Figure 5: Performance evaluation in ms(log5 scale) ofk-buffer variants with varyingk on a scene with constant fragment complexity(128).

K+B-Heap since the firstk fragments need O(1) time (compared
to O(log2 k)) to be inserted in the array. Due to the sorted arrival
fragment order, the remaining fragments do not affect performance
since they are successfully culled in both methods. A linear behavior
is observed when moving from less ({0.21M, . . . , 104.93M})
to more ({0.61M, . . . , 314.82M}) generated fragments. Our
methods are superior when compared with KB for all scene con-
figurations. Similar performance conclusions can be made for the
not-implemented KB-PS and KB-MHA methods, since they are sup-
posed to perform slightly worse than KB. Despite its efficiency due
to the hardware-implemented stencil routing, KB-SR speed is falling
whenk reaches higher values. An additional geometry pass must be
employed to successfully capture all fragments for KB (k > 16) and
KB-SR (k > 32), resulting in a significant performance downgrade.

Impact of Memory. Figure7 illustrates the performance evaluation
in terms of fps per MB for a testingk-buffer method set when
performance and memory are of utmost importance. To construct
k-fragmentless pixels, we permit pixels to be influenced by up ton =
10 ·k fragments. Thus, we definefp as the probability of a generated
fragment to not be discarded. We observe that K+B-SB is preferred
to be used for handling scenes with many empty pixels (pd = 25%)
and small number of rasterized fragments (fp = 25%). When
pixel and fragment densities increase (pd = 75%, fp = 75%),
K+B-SB performs better than the rest memory-aware methods.
However, K+B-SB behavior is normally worst than the bounded
methods since it theoretically performs slower (e.g. one extra
pass, storing data at global memory) in conjunction with the
small unused memory of the bounded methods. Despite the fast
speed of KB-ABSB on sparse scenes, performance is significantly
reduced when generated fragments blast off to high levels. Finally,
KB-ABArray, KB-ABLL, KB-ABSB and KB-LL fail to work when
fragment allocation results in memory overflow (k = 64).
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Figure 7: Performance evaluation in fps/MB(log2 scale) of all
k-buffer variants when moving from small number towards a large
number of generated fragments.

Impact of Tessellation. Figure8 illustrates how the performance
scales by moving from a low (1 level) to a high (64 level) tessellated
scene. A representative set of scenes are used to compare a number
of k-buffer methods that aim at capturing8 fragments. Three
scenes are generated where the same number of fragments are
rasterizedn = {16, 40, 80} for pd = 50% of the pixels. Different
configurations yield similar speed results. In all tests, a small
performance impact is observed from the SB-aware methods as

opposed to the linear behavior of the restk-buffers. This is due the
fact that the counting geometry pass is not-tessellation dependent.
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Figure 8: Performance evaluation in fps(log2 scale) of all k-buffer
versions on a scene with varying tessellation resolution[1, 64] and
increasing per-pixel fragment complexityn : r = {2, 5, 10}, k = 8.

4.1.2 A-buffer Comparison

Figure9 illustrates performance comparison of our methods against
the A-buffer alternatives for a scene with varying depth complexity.
The same scene configurations with Figure7’s test have been used,
with the difference thatk is set to the fragment cardinality, so that
K+B methods are able to capture all generated fragments. We
initially observe that both bounded K+B methods perform better
from all memory-aware A-buffer variants and slightly worse than
FreePipe, the fastest A-buffer implementation so far. The unnec-
essary culling mechanism is responsible for this burden. Similar
to previous tests, K+B-Array outperforms K+B-Heap, enhanced
by its constant-time insertion process. On the other hand, K+B-SB
despite its smaller computational cost as compared to LL is worse
than SB in all cases. Except from the culling cost, the additional
condition for each fragment at the count pass significantly affects
performance. Finally, note that the performance gap exhibited
between K+B-SB and KB-ABSB is alleviated when the pixel
density is increased (resulting at more rasterized fragments, from
{0.21M, . . . , 13.12M} to{0.61M, . . . , 39.35M}).
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Figure 9: Performance evaluation in fps(log2 scale) of A-buffer
alternatives on a scene with varying maximum depth complexity.

4.2 Memory Allocation Analysis

Table 1 presents complexity in terms of memory consumption
for all available methods that more or less simulate the behavior
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Figure 6: Performance evaluation in fps(log2 scale) of our bounded K+B methods and the sorting-awarek-buffer methods for a large set of
k values. Pixel density is shown in brackets.

of k-buffer. We initially observe that our K+B methods require
slightly more storage (8-byte) per-pixel than the rest of the memory
bounded methods due to the additional allocation of the counter and
semaphore textures. When moving to extreme screen resolutions
this burden is noticeable. However, these methods need more
storage when data packing is explored (∀k > 1 : 4k > 2k + 2).
K+B methods require less memory resources when compared to
the KB-SR (∀k > 2 : 3k > 2k + 2). Note that semaphore texture
allocation is further avoided when pixel synchronization extension is
employed on Haswell hardware. On the other hand, video-memory
consumption blasts off to high levels when A-buffer is constructed.
Observe the increased memory requirements of KB-ABArray

due to its strategy to allocate the maximum memory per pixel
p (n = maxp{f(p)} ≫ k). KB-ABLL, KB-LL, KB-AB SB

require less storage resources by dynamically allocating storage
only for non-empty pixels (f(p) ∈ [1, n]). Our memory-aware
method K+B-SB requires equal (whenf(p) ≤ k) or less (when
f(p) > k) storage than the unbounded A-buffer-based methods
reducing the risk of a memory-overflow. Finally, an interesting
observation is that K+B and K+B-SB when extended to capture
all fragments (k = n) require the same storage demands when
compared with the FreePipe and SB methods, respectively.

4.3 Image Quality Analysis

Figure 10 shows the image differences of KB, KB-MDT and
KB-ABArray methods when compared with the ground truth on
three different scenarios: (a) Z-buffer: Aradial engineCAD model
is rendered using Gooch shading, (b)k-buffer: a transparenthairball
model is visualized with red strips, and (c) A-buffer: a transparent
templemodel is completely rasterized. Noticeable quality down-
grade is observed at the first two image columns due to (center, left)
RMW hazards of KB and (center, right) depth conversion artifacts
of KB-MDT. To avoid memory overflow of KB-ABArray, we have
to allocate less storage than we actually need leading at (right) a
visually information loss for a small set of pixels. Note that in the last
example, K+B and KB-ABArray naturally produce the same image.

5 Conclusions

We have introducedk+-buffer, an improved GPU-accelerated k-
buffer framework, which handles RMW memory-hazards and depth
precision conversion artifacts, and avoids geometry pre-sorting and
the requirement for unbounded memory. An additional geometry
rasterization may be carried out to enable precise memory allocation.
Implementation details and light-weight modifications are offered
to enable full support of our framework on Fermi and Haswell GPU
architectures. Furthermore, Z-buffer and A-buffer functionalities
are successfully integrated under the proposed framework. An ex-
tensive experimental comparison has demonstrated the superiority
of our framework as compared to previousk-buffer alternatives with
regards to storage requirements, performance and image quality.

Further directions may be explored for tackling the problem of
multi-fragment rendering in rasterization architectures. Addi-
tional experiments showing the performance trade-off between

KB KB-MDT KB-ABArray K+B 

(a) 

(b) 

(c) 

Figure 10: Color-coded differences between (left) the images
generating using K+B against the outputs of (center-left to right)
KB, KB-MDT and KB-ABArray.

software (spin-lock) and hardware (pixel sync) implemented
semaphores on Haswell GPU should further be conducted. Consid-
ering completeness, a dynamick-buffer technique, wherek is not
the same for all pixels, should be investigated. In cases, where the
number of fragments varies when the camera or scene is animated,
an interesting alternative is to capture thek% of the generated
fragments per-pixel. Finally, another challenge is to improve image
quality by making use of anti-aliasing algorithms.
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